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Abstract. This paper presents a modified Morris-Lecar model by incorporating the sodium inward current.
The dynamical behaviour of the model in response to key parameters is investigated. The model exhibits
various excitability properties as the values of parameters are varied. We have examined the effects of
changes in maximum ion conductances and external current on the dynamics of the membrane potential.
A detailed numerical bifurcation analysis is conducted. The bifurcation structures obtained in this study
are not present in existing bifurcation studies of the original Morris-Lecar model. The results in this study

provide the interpretation of electrical activity in excitable cells and a platform for further study.

1 Introduction

The variation in concentration of ions across the cell
membrane results in fluxes of ions through the voltage-
gated ion channels. This electrophysiological process in
the cell membrane plays a fundamental role in under-
standing the electrical activities in excitable cells such
as neurons [33], muscle cells [15] and hormones [21]. The
temporal variation of the cell membrane potential due
to external stimulation is known as an action potential.
Different ion channels play different roles in the gener-
ation of an action potential. Depending on the cell, the
opening of Na™ (Ca®") channels causes influx of Na™t
(Ca®") and the membrane potential becomes more pos-
itive, hence the membrane is depolarised. When the
KT channels are open, there is eflux of K™ which
results in the repolarisation of the cell. Later, the mem-
brane potential becomes more negative than the resting
potential and the membrane is hyperpolarised. At this
stage, the membrane will not respond to stimulus until
it returns to the resting potential [9,10,22,25].

From the viewpoint of mathematics, numerous math-
ematical models have been developed to study the non-
linear dynamics involved in the generation of an action
potential in the cell membrane. They are often modelled
by a nonlinear system of ordinary differential equa-
tions (ODEs). Among the famous works is the one by
Hodgkin and Huxley [20] on the conduction of electrical
impulses along a squid giant axon. In their experiments,
it was reported that action potentials depend on the
influx of Na™. This work laid the foundation for other
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electrophysiological models. Other well-known models
are the FitzHugh-Nagumo model [12,36], the Morris-
Lecar (ML) model [34], the Chay model [5], and the
Smolen and Keizer model [43].

ML model describes the electrical activities of a
giant barnacle muscle fibre membrane. Despite being a
model for muscle cell, it has been widely used in mod-
elling electrical activities in other excitable cells mostly
in neurons [2,23,37,49]. Based on experimental obser-
vations, ML model is formulated on the assumption
that the electrical activities in barnacle muscle depend
largely on fluxes of Ca®" and K% rather than Na'.
On this basis, their model consists of three ODEs. It
is observed that the Ca®" current activates faster than
the KT current and the charging capacitor [26]. Thus,
the model is further reduced to two ODEs by setting
the Ca’T activation to quasi-steady state.

The two-dimensional ML model has been extensively
used in many single-cell models [11,30,46,47] and net-
work of cells [13,19,29,32] studies despite it is an
approximation of the three-dimensional ML model. In
spite of little attention to the three-dimensional model,
it has been used in modelling electrophysiological stud-
ies. For example, Gottschalk and Haney [17] investi-
gated how the activity of the ion channels are regulated
by anaesthetics. The three-dimensional ML model was
used by Marreiros et al. [31] for modelling dynamics in
neuronal populations using a statistical approach. Also,
Gonzélez-Miranda [16] investigated pacemaker dynam-
ics in ML model using the three-dimensional model.
Gall and Zhou [14] considered four-dimensional ML
model by including the second inward Na™ current.

Many recent papers have studied modified ML model
by adding relevant inward and outward ionic currents
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[1,3,7,32,38]. Zeldenrust et al. [48] extended the ML
model by including three additional ionic membrane
currents: a T-type calcium current, a cation selective
h-current and a calcium-dependent potassium current
to investigate reliability of spikes in thalamocortical
relay cells. Also, Azizi and Mugabi [2] added calcium-
dependent potassium current to the ML model to
study bursting properties in neurons. They showed that
the model has complex dynamical behaviour including
square-wave, elliptic, and parabolic busters depending
on parameter combinations. Rajagopal et al. [39] modi-
fied the ML model by incoporating the influence of elec-
tric and magnetic field on dynamical behaviours of net-
work of neurons. They found complex spatiotemporal
dynamics including chaotic bursting and spiral waves.

The purpose of this paper is to investigate the influ-
ence of sodium inward currents on the variation of mem-
brane voltage of a single excitable cell. In recent years,
experimental and computational analyses have sug-
gested that sodium currents are relevant in the genera-
tion of action potential in some muscle cells [4,24,45].
Bifurcation analysis is often used to investigate the
mode of the transition of electrical activities of excitable
cells. It helps us to identify the key parameters that
cause changes in the dynamical behaviour qualitatively
[25,28]. A lot of studies on bifurcation analyses have
been carried out on the two-dimensional [11,18,38,44]
and three-dimensional [16] ML models, however, to our
knowledge there appears no work in the literature that
has extensively considered the bifurcation analysis of
the four-dimensional ML model. In this present paper,
we focus on the maximum conductances of ion currents
and external current as bifurcation parameters. As a
consequence, we show some additional bifurcation that
are not present in the existing results of ML model.

The paper is organised as follows. In Sect. 2, we
present the model equations and the dynamics of the
model upon variation of model parameters. A detailed
bifurcation analyses are carried out in Sect. 3. Finally,
the conclusion is presented in Sect. 4.

2 Model equation

The classical Morris-Lecar (ML) model [34] is a three-
dimensional nonlinear system of ODEs, which is
described as

C% = lext — I — Ica — Ik, (1)
dm
E = )\m(v)(moo(v) - m)v (2)
dn

where V' is the membrane potential, Iy is the external
current, and C is the membrane capacitance. m and n
are the fraction of open calcium and potassium chan-
nels, respectively. The ionic currents in (1) are defined
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as

I, = QL(V - UL)7 Ica = gCam(V - UCa),
Ix = ggn(V — vk),

(4)

where g1, gca, and gk are the maximum conductances
of the leak, calcium, and potassium channels, respec-
tively. Also vy, vca, and vk are the Nerst reversal poten-
tials of the leak, Ca>", Kt and Na™ channels, respec-
tively.

Taking into account the contribution of Na® on
membrane depolarisation, we extend the ML model by
adding Na™ current, I, = gnaw(V —vna), in (1). With
this current the ML model becomes a four-dimensional
system of ODEs defined as

CLUEE) AU Y Y P A
B A (V) (V) = m), (6)
% = (V) (e (V) = m), (7)
B A (V) (V) — ). (®)

The equivalent circuit representation of the cell mem-
brane with four ionic channels, I1,, Ica, Ik, and Ixa, is
shown in Fig. 1.

The fraction of open Ca?", Kt and Na™ channels at
steady state, denoted by mee, Neo, and we, are defined

as
Meo(V) =05 (1 + tanh (V; Ul)) ,
2

Noo(V) =05 <1+tanh (V_773>

weo (V) = 0.5 <1+tanh <VU6@5>) .

Extracellular

il

chak C

Intracellular

Fig. 1 Equivalent circuit representation of the cell mem-
brane with four ionic channels
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Fig. 2 Time series of the membrane potential V' when the Na® conductance gna is: a blocked (gna = 0); b unblocked

(gNa # 0)

The voltage-dependent rate constants associated with
calcium, potassium and sodium channels are

A (V) = ¢, cosh (VQ__ “1) ,

V2

An (V) = 1y, cosh <V2— U3> :

V4

Aw(V) = 9y cosh (V2 175) ,

V6

Unless stated otherwise, parameter values are as listed
in Gall and Zhou [14]: C = 1, Isxy = 50, g, = 2, v, =
—50, gCa = 4, v, = 100, gK = 8, Vg = =170, gNa = 2,
UNa = DD, v1 = —1, vg = 15, v3 = 10, vg = 14.5, v5 = 5,
vg = 15, ¥, = 1, ¢, = 0.0667, ¢, = 0.033.

2.1 Changes to excitable dynamics as a parameter
is varied

To analyse the model, we first assess the effects of
Na™t current on electrical activity. To do this, we block
the conductance gy, for the Na™t current. The model
is integrated numerically using the standard fourth-
order Runge-Kutta method using a step size of 0.05
in the numerical software XPPAUT [8]. Figure 2a and
b show the time series of the membrane potential V'
for model (5)(8) when the Na* conductance is blocked
and unblocked, respectively. Over a range of parameters
considered, we found that the addition of Na™ current
causes the membrane potential to shift to more hyper-
polarised values for hyperpolarised states, see Fig. 2b.
This tells us that the effects of Na™ conductance is non-
negligible.

As seen in previous studies [11,16], variation of
parameters can result in changes to dynamical behav-
iour of the model, for example, transitions from a rest
state to periodic oscillations and vice versa. Here, we
investigate the effects of maximum conductance on the

dynamical behaviour of model (5)-(8). The dynamics
of the membrane potential V' upon varying Na® cur-
rent conductance gy, is shown in Fig. 3. For the range
of values of gn, considered, the system either converge
to a rest state or oscillatory state. For extremely low
values of gna, a single action potential is observed. In
particular, the time evolution and its corresponding
phase space for gy, = —20 are shown in Fig. 3a and
b, respectively. Upon increasing gn,, periodic oscilla-
tions of action potentials are observed in the system, see
Fig. 3c. The periodic oscillations correspond to a closed
loop in the phase space, see Fig. 3d. The closed loop is
also known as a limit cycle or periodic orbit. Further
increasing gna, the system stabilises to a steady state,
see Fig. 3e and f. Similar behaviours are observed when
gk and gc, are varied (results not shown). A detailed
bifurcation analysis is given in Sect. 3 to further under-
stand how the dynamical properties of model (5)—(8)
change as parameter values is varied.

3 Numerical bifurcation analysis

With the aid of bifurcation analysis, we examine the
dynamical behaviour of model (5)—(8) as different
model parameters are varied in turn. The bifurca-
tion diagrams are produced in XPPAUT and edited
in MATLAB. The continuation parameters used in
XPPAUT are NTST=100, NMAX=2000, Method=stiff,
EPSL=1e-7 , EPSU=le-7, EPSS=le-7, ITMX=20,
ITNW=20, DSMIN=1e-05, DSMAX=0.05. The abbrevia-
tions and labels for the bifurcation points are given in
Table 1.

3.1 Influence of gna
Here, we vary gna to explore the effects of Na™ cur-

rent on the dynamical behaviour of model (5)—(8).
Figure 4 is a bifurcation diagram of the membrane
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Fig. 3 Numerical simulations of the membrane potential V' for a gna = —20; ¢ gna = —10; € gna = 1.8. Their corresponding

phase space are (b), (d) and (f), respectively
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Table 1 Abbreviations and notations of bifurcation points

Bifurcation Abbreviation
Hopf bifurcation HB
Saddle-node bifurcation SN
Saddle-node bifurcation of cycles SNC
Homoclinic bifurcation HC
Period-doubling bifurcation PD

potential V' upon varying gn. with other parameters
fixed. For the range of values of gn, considered, there
exists a unique equilibrium. The system has a sta-
ble equilibrium except between two Hopf bifurcations
where the equilibrium is unstable. As seen in Fig. 4a,
the system loses stability through a subcritical Hopf
bifurcation HB; at gna ~ —13.305 and regains sta-
bility at another subcritical Hopf bifurcation HBo at
gNa ~ 0.69436. The unstable limit cycle generated at
HB; gain stability through a saddle-node bifurcation
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of cycle SNC; at gna ~ —13.4394, and loses stabil-
ity at a period-doubling bifurcation PD;. The unsta-
ble limit cycle branch regains stability through another
SNC3 at gna =~ —13.1223. The stable double-period
limit cycle branch emanated from the PD; loses sta-
bility at another period-doubling bifurcation PDy at
gNa ~ —13.4323, and it regains stability through a
SNCs at gna &~ —13.2516 before converging to the first
unstable limit cycle branch at gn. ~ —13.1223, see
Fig. 4b. Upon further increasing the value of gn,, the
limit cycle loses stability in a SNCy at gna ~ 1.10527
before it ends in a HB point at gn. ~ 0.69436.
Continuation of PDs bifurcation results in another
stable limit cycle that loses stability at a period dou-
bling bifurcation PDy, the period of this limit cycle is
double the period of the limit cycle of PDy. Continuing
this process results in a cascade of PD bifurcations of
limit cycles, and this may lead to chaotic dynamics in
the system [27,40]. Table 2 shows the values and period
of the period doubling bifurcations that arise as gy, is
varied. The projection of the periodic trajectories for
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Fig. 4 a Bifurcation diagram of the membrane potential V with gn. as bifurcation parameter. The remaining parameter
values are fixed as in Sect. 2. b—c Are enlargements of (a). Continuous [dashed] curves correspond to stable [unstable]
solutions. Black [mangenta] curves correspond to equilibria [periodic oscillations]. HB Hopf bifurcation, SN saddle-node
bifurcation (of an equilibrium), SNC saddle-node bifurcation of a periodic orbit, PD period-doubling bifurcation
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Table 2 Summary of the parameter values and period of
Period doubling bifurcations that arise as gna. is varied

Bifurcation JNa Period

PD; —13.4334 36.0272
PDs —13.4323 72.1846
PDy —13.4321 144.489
PDg —13.4320 289.001
PDis —13.4320 578.025
PD3s —13.4320 1156.05

Period-1, 2, 4, 8, 16 and 32 onto (V,n,m) phase space
is illustrated in Fig. 5. All the double-period unsta-
ble limit cycles generated at each PD points undergo
SNC bifurcations before they converge to the limit cycle
emanated from the first HB bifurcation.

3.2 Influence of gk and gca

Figure 6a shows the bifurcation diagram of the mem-
brane potential V' as gk is varied. For the values of
gk considered, there exists a unique equilibrium. For
extremely low values and high values of gk, the equi-
librium is stable. Increasing gi, the system loses sta-
bility through a subcritical Hopf bifurcation HB; at
gk ~ 10.029 and this leads to emergence of an unsta-
ble limit cycle which becomes stable through a saddle
node bifurcation of cycles SNC; at gk =~ 9.345. As gk
increases further, the stable limit cycle changes stabil-
ity in another saddle node bifurcation of cycles SNCs at
gk ~ 46.598. The unstable limit cycle ends in another
subcritical Hopf bifurcation HBy at gk ~ 42.583. Bista-
bility is observed, that is, a stable limit cycle coexists
with a stable equilibrium when 9.345 < gx < 10.029
and 42.583 < gk < 46.598.

Next, we vary the value of the parameter gc,. Fig-
ure 6b shows the bifurcation diagram of the mem-
brane potential V' as gc, is varied. As gg, is varied,
the system loses stability through a subcritical Hopf
bifurcation HB; at gc, =~ 1.6191 and this results in
emergence of unstable limit cycle which becomes sta-
ble through a saddle node bifurcation of cycles SNCy
at gca =~ 1.5974. As gca increases further, the stable
limit cycle loses stability in another saddle-node bifur-
cation SNCy at go. =~ 3.2579 and the unstable limit
cycle ends in a subcritical Hopf bifurcation HBs at
gca = 2.8938. Between the two subcritical Hopf bifurca-
tions, there exists a unique unstable equilibrium point.
For 1.5974 < gca < 1.6191 and 2.8938 < gca < 3.2579,
a stable limit cycle coexists with a stable equilibrium
and the system is bistable. For these values of gca, a
stable limit cycle coexists with a stable equilibrium.

3.3 Influence of I
Apart from the maximum conductance of ionic chan-

nels, the influence of external current is highly impor-
tant while investigating the dynamics of action poten-
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tials in electrophysiological studies. Here, we consider
the effects of It using two parameter sets. For set I,
the parameter values are as listed in Sect. 2. Figure 7a
is a bifurcation diagram of the membrane potential V'
with the applied current Iy as a bifurcation parame-
ter, other parameters fixed. For very low value of Io,
a unique stable equilibrium point exists. Upon increas-
ing Iy, the system changes stability through a saddle
node bifurcation SNy at I. =~ 30.52 and the unsta-
ble branch fold back via another saddle node bifur-
cation SNy at I. =~ —39.57. Between the two SN
bifurcations, the system has three equilibria: one sta-
ble (lower branch) and two unstable (upper and mid-
dle branch), see Fig. 7a. The upper unstable branch
changes stability at a subcritical Hopf bifurcation HB
at Iext ~ 6.656 before the system returns to a rest state
as Iy increases. The unstable limit cycle emanated
from HB fold back and changes to a stable limit cycle
through a saddle node bifurcation of cycles SNC; at
Text ~ 26.84. The limit cycle loses stability at another
SNC;y at It =~ 22.99 before it terminates at I.,; ~
23.79.

For set II, vs = 3 while other parameters are fixed
as in Sect. 2. A bifurcation diagram of the membrane
potential V' with I, as bifurcation parameter is shown
in Fig. 8a. For I < —8.7715, there exists a unique
stable equilibrium point. Upon increasing I.y, the sys-
tem loses stability through a subcritical Hopf bifurca-
tion HB; at I =~ 33.29650. The unstable limit cycle
emanated from HB; ends in an homoclinic bifurcation
HC; at Iyt =~ 33.2911, see Fig. 8b. The curve of the
homoclinic orbit is shown in Fig. 9a. Increasing oyt
slightly there appears a saddle-node bifurcation SN
at loxt ~ 33.2026, the unstable branch fold back at
another saddle-node bifurcation SNy at Io &~ —8.7715.

As Iy increases further, the system passes through
another saddle node bifurcation SN3 at I.; ~ 0.8353.
For I, € [SNg,SN3], there exist three equilibria; one
stable and two unstable. The branch of SN3 bifurcation
folds at another saddle-node bifurcation SNy at Ioy ~
—1.7961, and the unstable upper branch becomes stable
in another subcritical Hopf bifurcation HBs. For Ioy €
[SNy4, HBs], there exist five equilibria; one stable and
four unstable equilibria. Also, for I € [HB2, SN3],
there exist five equilibria; two stable and three unstable.
For this parameter values, the system is bistable, that
is, coexistence of two stable equilibria. To the right of
SN, the system has a unique stable equilibrium.

The unstable limit cycle generated at the Hopf bifur-
cation HBs fold back at I,y =~ 10.80 and slightly after
the fold point appears a period-doubling bifurcation
PD; at Iy =~ 10.77. At PDq, the limit cycle bifur-
cates into unstable double-period and unstable limit
cycles, and they both end in an homoclinic bifurca-
tion, see Fig. 8c. The curve of the homoclinic orbit
is shown in Fig. 9b. Continuation from the period-
doubling PD; results in period-doubling bifurcation
PDs, subsequently, the PD5 results in period-doubling
bifurcation PDy. Table 3 shows the parameter val-
ues for the period-doubling and homoclinic bifurca-
tions and their corresponding periods as Iy is var-
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Fig. 5 Phase-space of (5)—(8) showing the cascade of period-doubling bifurcations. a Period-1, b Period-2, ¢ Period-4, d

Period-8, e Period-16, f Period-32, respectively

ied. The projections of periodic trajectories for period-
1, 2, 4 onto (V,n,m) phase space are shown in
Fig. 10.

3.4 Two parameter bifurcation analysis

In this section, we perform two parameter bifurcation
analysis of (5)—(8) in (Joxt, gk ) plane. The bifurcation

diagram shown in Fig. 13 is produced via numerical con-
tinuation software MATCONT [6]. The software imple-
ments Moore-Penrose continuation method to compute
family and path of existing solution curves as parame-
ters are varied. It is able to detect various kinds of bifur-
cations, switch to and compute the bifurcated branches,
and allows us to follow the loci of the bifurcations
in two parameters to detect codimension-2 bifurcation
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Fig. 6 Bifurcation diagrams of the membrane potential V' with a gk, b gca as the bifurcation parameters
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Fig. 7 a Bifurcation diagram of the membrane potential V' with Iex; as the bifurcation parameter and other parameters
are fixed as in Sect. 2. The labels and other conventions are as in Fig. 4

points. The step-by-step procedures for generating the
codimension-2 bifurcation diagram Fig. 13 in the GUI
of MATCONT are given below:

i

ii.

iii.

First we integrate (5)—(8) from initial state variable
values (V,m,n,w) = (—20,0,0,0) until the solution
converges to an equilibrium point.

Then we compute the equilibrium curve with Iy
as a continuation parameter. To initialise the equi-
librium continuation from the last point in (i), we
set It = 50, ntst = 40, and ncol = 4 in
the Starter window and then compute Forward
and Backward. Two Hopf bifurcations and four
saddle-node bifurcations of equilibria are detected
along the curve. The MATCONT window during
the computation of the equilibrium curve is shown
in Fig. 11.

Next, we compute the limit cycles from the Hopf
bifurcations. In the Starter window we set Iy as
bifurcation parameter and activate period to fol-

@ Springer

iv.

low the period of oscillation along with the con-
tinuation. We compute Forward to start the con-
tinuation from the Hopf bifurcation in the lower
branch, MATCONT detects no special point except
that the unstable limit cycle that emanates from
the Hopf bifurcation terminates at an homoclinic
bifurcation, see Fig. 12a. Similarly, we compute For-
ward to start continuation from the Hopf bifurca-
tion in the upper branch, an unstable limit cycle
emanated from the Hopf bifurcation also terminated
an homoclinci bifurcation and along the computa-
tion three period-doubling bifurcations are detected,
see Fig. 12b.

Finally, in the Continuer window we set
MaxStepSize = 1 and select Iy and gk as bifurca-
tion parameters in the Starter window. We then
compute Forward and Backward at the Hopf
bifurcation to produce the Hopf locus. Similarly,
the loci of the saddle-node bifurcation and period-
doubling bifurcation are initialised from each bifur-
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Fig. 8 a Bifurcation diagram of membrane potential V' with I.x as a bifurcation parameter. b—c Are enlargements of (a).
and other parameters are fixed as in Sect. 2. The labels and other conventions are as in Fig. 4
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Fig. 9 The curves of homoclinic orbits of the periodic oscillation emanated at a HB1; b HB2

cation points, respectively. Several codimension-2
bifurcations are detected and their descriptions are
explained in Table 4.

Figure 13 is divided into regions with respect to
different types of dynamical behaviour and we have

assigned each region a number, see Table 5. In the
remainder of this section, we describe the dynamics of
model (5)—(8) as Iyt and gk are varied.

For sufficiently large values of gk, there are two
supercritical Hopf bifurcations HB; and HB5. Thus for
slice 1; in Fig. 13 there are period solutions in region
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Table 3 Summary of the parameter values and period of
period doubling and homoclinic bifurcations that arise as

Tyt is varied

Bifurcation point Text Period

PDy 10.7705 33.5585

PDs 10.7584 67.1396

PDy4 10.7555 134.353

HC, 33.2911 2.61499 F+4-08
HC, —4.05553 3.95045 E+09

IT. A codimension-1 bifurcation diagram along slice 1;
for which gk = 60 is shown in Fig. 14a. The sta-
ble equilibrium solution loses stability through a Hopf
bifurcation HBy as Iy is varied. A stable limit cycle
emanated from HBs ends in another Hopf bifurcation
HB; before the equilibrium regains stability via HB;.
Here the system passes through regions I—II—I. As
the value of gk decreases, there appears a generalised
Hopf bifurcation, denoted GH;, on the Hopf bifurcation
locus at gk =~ 43.9007. This is a codimension-2 point
where the HB locus changes from supercritical SupHB
to subcritical SubHB [28]. Below the GHj, there are

(a)

0.4

0.25

0.8

0.25

0.2
0.8
0.6

04 s

Eur. Phys. J. B (2022)95:4

two Hopf bifurcations, a subcriticcal and a supercriti-
cal. Figure 14b is a bifurcation diagram along slice 15 in
Fig. 13 for which g = 26. The system passes through
regions I—=II—T as in the previous case (slice 1;) except
that the stable equilibrium solution in region I loses sta-
bility through a subcritical Hopf bifurcation HBs. An
unstable limit cycle emanated from HBs changes stabil-
ity via a saddle-node bifurcation of limit cycles (SNC),
the stable limit cycle ends in a supercritical Hopf bifur-
cation HB; then to the left of HB; the equilibrium solu-
tion regains stability.

Upon further decrease in the value of gk, the loci of
saddle-node bifurcations SN; and SN collide and anni-
hilate in a cusp bifurcation CP; at gk ~ 18.1715. As gk
decreases, a 1:2 resonance bifurcation R2 and two gen-
eralised period-doubling bifurcations GPD; and GPDs
appear on the locus of period doubling bifurcation at
gk ~ 12.624, 15.982, and 13.535, respectively. Also, the
loci of saddle-node bifurcations SN3 and SN, collide
and annihilate in a cusp bifurcation CP3 at gk ~ 8.6962
and the supercritical Hopf bifurcation SupHB changes
to subcritical Hopf bifurcation in another generalised
Hopf bifurcation GHs at gk ~ 11.3037, see Fig. 15a.

As the value of gk is decreased below CPj3, there
exist four saddle-node bifurcations SN, SNy, SN3 and
SNy, an example is shown in Fig. 15b along slice Is.

(b)
04
0.35
0.3
0.25
0.2
0.8
15
0.6 . 0 5 10
" i V(mV)
(©
20
15
. s 10
V(mV)

Fig. 10 Phase-space of (5)—(8) showing the period-doubling bifurcations in response to variation of I.,¢. a Period-1, b

Period-2 and c Period-4, respectively
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Fig. 12 A plot of the limit cycle that emanates from a the Hopf bifurcation in the lower branch; b the Hopf bifurcation

in the upper branch of the equilibrium curve shown in Fig. 11

Table 4 Abbreviations of codimension-two bifurcations

Bifurcation Abbreviation
Cusp bifurcation CP;i=1,2,3
Bogdanov-takens bifurcation BT;i=1,2
Generalized Hopf bifurcation GH; i =1,2,3
Zero-Hopf bifurcation 7ZH
Generalised period doubling bifurcation GPD; i1 =1,2
1:2 Resonance R2

Flip-flop bifurcation LPPD

The corresponding codimension-1 bifurcation diagram
for which gk = 8 is shown in Fig. 8a and described
in Sect. 3.3. The system passes through regions I —

I —- V. —- VI - IV — 1 in Fig. 13. The loci of
saddle-node bifurcations SNy and SN3 collide and anni-
hilate in a cusp bifurcation CPy at gx ~ 18.1715. As
we decrease the value of gk further, Bogdanov-Takens
BT, and BT5 occcur on the loci of saddle-nodes SNy
and SN; at gk ~ 7.1062 and gk =~ 6.9935, respectively.
The loci of subcritical Hopf bifurcations emanate from
these codimension-2 points. These loci are tangential to
SNy and SN; at these codimension-2 points. Observe
also are zero-Hopf bifurcation ZH at gk ~ 6.4099, a
codimension-2 where the locus of HBy intersect the
locus of SNy, and flip-flop bifurcation at gk =~ 6.8379 on
the locus of period doubling bifurcation as gk decreases.

Finally, as gk is decreased further a generalised Hopf
bifurcation, denoted GHgs, occurs on the Hopf bifurca-
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Fig. 13 Two parameter bifurcation diagram of (5)—(8) in the (Iext, gk )-plane for parameter set II in Sect. 3.3 and other
parameter values as in Sect. 2. The values of gk in 11, l2, I3, 14 are 60, 26, 8 and 3.5, respectively. The blue, red and
magenta curves are the loci of Hopf bifurcation, saddle-node bifurcation, and period doubling bifurcation. The labels for
the codimension-2 bifurcations are explained in Table 4. The invariant sets that exist in each region are listed in Table 5

Table 5 Summary of the six different combinations of equi-
libria and limit cycles that arise in Fig. 13 and its magnifi-
cations, Figs. 15a, 15b, and 16a

Region Existence of equilibria and limit cycles

I One stable equilibrium, no limit cycles
(rest state)

11 One unstable equilibrium, one stable
limit cycle

111 One stable equilibrium, two unstable
equilibria, no limit cycles

v Two stable equilibria, one unstable
equilibrium, no limit cycles

\% One stable equilibrium, four unstable
equilibria, one unstable limit cycle

VI Two stable equilibria, three unstable

equilibria, one unstable limit cycle

tion locus HBs at gk ~ 4.1025. Below this codimension-
2 point, the only bifurcations that remain are the two
saddle-node bifurcations SN; and SNs. An example is
shown Fig. 16a which is an enlargement of Fig. 13. A
bifurcation diagram along slice Iy for which gx = 3.5
is shown in Fig. 16b. Here the system passes through
regions [ - IV — L.

4 Conclusion

In this present paper, we have studied a 4D-ML model
to explore the influence of second inward Na® cur-
rents on electrical activities of excitable tissues. This

@ Springer

work is motivated by the results in [45], where it is
reported that voltage-gated Nat currents appear to
contribute to the depolarising stage of action poten-
tials in some excitable cells. We focused on address-
ing the influence of maximum conductances of ion
channels on the dynamics of the membrane potential.
Upon varying the conductance associated with the Na™
currents, gna, the model exhibits different electrical
activities.

With the aid of numerical bifurcation analysis, we
examined the effects of parameters on the dynami-
cal behaviour of the model. Our results showed that
increasing the maximum conductance of sodium current
gNa, the model transitions from rest state to periodic
oscillations. For some values of gna., the model shows
complex behaviour, specifically, it undergoes cascades
of period-doubling bifurcations. It was found that the
bifurcation structure of varying the maximum conduc-
tance of potassium current gg is qualitatively similar to
that of varying the maximum conductance of calcium
current gco, except in reverse. That is, increasing the
value of gk results in the same qualitative changes to
the dynamics of the model as decreasing the value of
dca-

We also showed qualitatively the effect of varying
the external current I.4¢ on the dynamical behaviour
of the model. Similar bifurcation diagram has been
observed by Gall and Zhou [14], they discussed the
bifurcation diagram in some detail, although with-
out an explicit determination of the period oscillations
thus their bifurcation diagram seems incomplete. How-
ever, in this work, we give a detailed bifurcation struc-
ture. We showed that the unstable periodic oscillations
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emanated from the two Hopf bifurcations terminate in
homoclinic bifurcations. We also observed cascades of
period-doubling PD bifurcations for some values of Ioys.
The existence of PD bifurcations is an indicator that the
model can exhibit chaotic behaviour in some parameter
regime.

The codimension-2 bifurcation analysis in (loxt, 9K )-
plane gives further details on transitions between dif-
ferent electrical activities in the model. The electrical
activities in the original ML model can be of Type
I or IT excitability depending on how the cell transi-
tions from rest state to periodic oscillations is through
a Hopf bifurcation. [11,44]. In Type I excitability, the
cell transitions from rest to an oscillatory state via a
saddle-node on an invariant circle bifurcation and in
Type II excitability the transition is via a Hopf bifur-
cation. In this work, the model exhibits only Type II
excitability.

The results in this paper showed that the Na™ chan-
nels may influence the depolarisation stage of an action
potential. It is hope that this model provides a frame-
work that can aid in the understanding of various elec-
trical activities in excitable cells. Based on the results of
the present paper more complex behaviour is expected
when two or more cells are coupled together, thus the
dynamics of a network of cells would be addressed in
future. The individual systems can be interconnected
via ring-star network [35] , two-dimensional lattice [41],
multilayer network [42] to account for various other spa-
tio temporal patterns, chimera states.
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