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Abstract
Evidence from experimental studies shows that oscillations due to electro-mechanical
coupling can be generated spontaneously in smoothmuscle cells. Such cellular dynam-
ics are known as pacemaker dynamics. In this article, we address pacemaker dynamics
associated with the interaction of Ca2+ and K+ fluxes in the cell membrane of a
smooth muscle cell. First we reduce a pacemaker model to a two-dimensional system
equivalent to the reduced Morris–Lecar model and then perform a detailed numer-
ical bifurcation analysis of the reduced model. Existing bifurcation analyses of the
Morris–Lecar model concentrate on external applied current, whereas we focus on
parameters that model the response of the cell to changes in transmural pressure. We
reveal a transition between Type I and Type II excitabilities with no external current
required. We also compute a two-parameter bifurcation diagram and show how the
transition is explained by the bifurcation structure.
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1 Introduction

Electro-mechanical coupling (EMC) refers to the contraction of a smooth muscle cell
(SMC) due to its excitation in response to an external mechanical stimulation, such as
a change in transmural pressure, that is, the pressure gradient across the vessel wall
(Ran et al. 2019). In some SMCs, EMC activity can be spontaneous owing to interac-
tions between ion fluxes through voltage-gated ion channels. Based on experimental
observations (cf. Casteels et al. 1977; Harder 1984), the ion channels coordinating the
EMC activity in SMCs of feline cerebral arteries are the voltage-gated Ca2+ channel,
voltage-gated K+ ion channel and the leak ion channel. The spontaneous depolarisa-
tion of the cell membrane leads to the opening and closing of ion channels resulting in
a fluctuation of ionic currents that can induce EMC activity (Sui et al. 2003; Brading
2006; Mahapatra et al. 2018). This pacemaker EMC activity varies across species of
SMCs (Savineau and Marthan 2000) and understanding the impact of these dynam-
ics on the type of excitability may suggest therapeutic strategies for treating diseases
related to SMCs.

Under normal physiological conditions, the cellmembrane of SMCs do not oscillate
in the absence of external sources; however, several exceptions have been observed.
Mclean and Sperelakis (1977) studied the spontaneous contraction of cultured vascu-
lar SMCs in chick embryos. Lusamvuku et al. (1979) observed spontaneous electrical
activity in rabbit cerebral arteries exposed to high pressure. Harder (1984) examined
cellular mechanisms of the myogenic response, the pressure-induced contraction of
blood vessels to regulate blood flow, in feline middle cerebral arteries by recording
intracellular electrical activity of arterial muscle cells upon elevation of transmu-
ral pressure. It was observed that the blood vessels contract and spontaneous firing
occurs as the arterial blood pressure is increased. Also in vitro, Osol and Halpern
(1988) observed that the spontaneous cyclic oscillations and EMC activity in cerebral
arteries from genetically hypertensive rat depend on transmural pressure and tempera-
ture. Llinas (1988) experimentally explored auto-rhythmic electrical properties in the
mammalian central nervous system. Meister et al. (1991) and Gu (2013b) reported
experimental observations of spontaneous oscillations induced by modulating either
extracellular calcium or potassium concentrations in neural cells.

Studying the collective behaviour of a population of coupled SMCs is difficult due
to complex interactions between the cellular components within the vascular wall.
Advancements in technology now enable these interactions to be simulated at a large
scale. Multiple researchers have built integrated multi-scale computational models of
an arterial segment incorporating large populations of coupled arterial components
(cf. Shaikh et al. 2011; Thorne et al. 2011; He et al. 2015; Bianchi et al. 2019). These
models allow for simulations of populations of coupled SMCs, and the results may be
compared directly with experimental and clinical findings. To this end, Shaikh et al.
(2011) studied Ca2+ dynamics of SMCs in an arterial segment through large coupled
populations of endothelial cells (ECs) and SMCs with a large-scale computational
model implemented on an IBM Blue Gene/L computing architecture (available at
bluefern). Their model is based on the work of Koenigsberger et al. (2005), where
cases of homocellular and heterocellular couplings are considered.
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Motivated by the work of Shaikh et al. (2011), we propose a model to study the
dynamics of a population of coupled SMCs. EMC has been observed in the absence of
ECs (Haddock et al. 2002; Lamboley et al. 2003); thus, we will not consider ECs in the
model. The SMCs are coupled through gap junctions which can be one of three types:
Ca2+, inositol triphosphate (IP3) or membrane potential (electrical). A wider aim of
our research is to analyse the dynamics of the SMCs through membrane potential
coupling by extending the work of Gonzalez-Fernandez and Ermentrout (1994) on
pacemaker vasomotion in small arteries. In this present work, we will investigate the
dynamics of the membrane potential in a single SMC.

The dynamics of electrical activity in cell membranes are nonlinear and often well-
modelled by a nonlinear system of ordinary differential equations (ODEs) (Izhikevich
2007; Ma and Tang 2015). Many such models have been developed to describe the
behaviour of excitable cells in the cell membrane. The pioneering work of Hodgkin
and Huxley describes the conduction of electrical impulses along a squid giant axon
(Hodgkin andHuxley1952).Otherwell-knownmodels include theFitzHugh–Nagumo
model (FitzHugh 1961; Nagumo et al. 1962), the Morris–Lecar model (Morris and
Lecar 1981), the Hindmarsh–Rose model (Hindmarsh and Rose 1984), and the Izhike-
vich model (Izhikevich 2007).

As revealed in experiments, the electrical activity of a single excitable cell has a
variety of possible dynamical behaviours, such as a rest or quiescent state, simple
oscillatory motion, and complex oscillatory motion. A model of a cell can transition
from one state to another as parameters are varied (Gu 2013a, b). These changes can
be understood by identifying critical parameter values (bifurcations) at which the
dynamical behaviour changes qualitatively (Strogatz 1994; Kuznetsov 1995; Meiss
2007). For excitable cells, arguably the most important transition is from rest to an
oscillatory state (or vice versa). Bifurcations associated with this and other transitions
have been identified in many studies (Govaerts and Sautois 2005; Tsumoto et al. 2006;
Prescott et al. 2008; Storace et al. 2008; Barnett and Cymbalyuk 2014; Liu et al. 2014;
Zhao and Gu 2017; Jia 2018; Mondal et al. 2018, 2019).

Research into EMCactivity has shown that abnormal contraction is often associated
with tissue diseases. For example, abnormal vasomotion in arteries can damage blood
vessels causing hypertension over time (Humphrey andWilson 2003) and spontaneous
contraction of the urinary bladder causes urine leak (Brading 2006). Bifurcation the-
ory has been used in understanding the generation and control of various diseases
associated with excitable cells (cf. Christini et al. 1999; Xie et al. 2011; Jia et al. 2017;
Jia 2018; Verma et al. 2020)

Models for excitable cells can be classified into two types depending on the nature of
action potential generation. Rinzel and Ermentrout (1999) used the type of bifurcation
at the onset of firing to classify excitable cells into Type I and Type II. In Type I
excitability, the cell transitions from rest to an oscillatory state through a saddle-node
on an invariant circle (SNIC) bifurcation. As parameters are varied to move away
from the bifurcation, the frequency of the oscillations increases from zero. In contrast,
for Type II excitability the transition from rest to an oscillatory state is through a
Hopf bifurcation. In this case, the oscillations emerge with nonzero frequency. Rinzel
and Ermentrout (1999) also concluded that their classification is consistent with the
original classification of Hodgkin (1948) for the squid giant axon, see Ermentout
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(1996), Rinzel and Ermentrout (1999), Crook et al. (1998) and Vreeswijk and Hansel
(2001).

TheMorris–Lecar model can exhibit both Type I and Type II excitability depending
on the parameter regime. Rinzel and Ermentrout (1999) studied Type I and Type
II excitability in the reduced Morris–Lecar model by adjusting the applied current.
Tsumoto et al. (2006) and Zhao and Gu (2017) subsequently identified codimension-
two bifurcations associated with a change between the two types of excitability. See
also Duan et al. (2008) for a similar two-parameter bifurcation analysis of the Chay
neuronal model, respectively.

Recently, there have been several studies of pacemaker dynamics in excitable cells,
both theoretical (Duan and Lu 2006; Duan et al. 2008) and computational (González-
Miranda 2012). The importance of the leak channel in the pacemaker dynamics of the
full Morris–Lecar model has been studied by González-Miranda (2014). Also, Meier
et al. (2015) confirmed the existence of spontaneous action potentials in the two-
variable Morris–Lecar model. Despite many studies of pacemaker activity in SMCs
having being conducted, there does not appear to have been any discussion about the
types of excitabilility that can be exhibited.

The purpose of this paper is to explain the occurrence of Type I and II excitability in
pacemaker dynamics. We begin in Sect. 2.1 with the three-dimensional ODEmodel of
Gonzalez-Fernandez andErmentrout (1994) for pacemaker dynamics in feline cerebral
arteries. In Sect. 2.2, we apply a small simplification to the model which reduces
the dynamics to the two-variable Morris–Lecar model with no applied current and
nondimensionalise the model in Sect. 2.3.

Then inSect. 3weperformadetailed bifurcation analysis of the nondimensionalised
model. As the primary bifurcation parameter, we use the voltage associated with the
opening of the K+ channels because experiments have revealed that action potentials
can be triggered by an increase in transmural pressure (Harder 1984, 1987). We find
both types of excitability and identify codimension-two bifurcations that represent
endpoints for the two types of excitability. We stress that while the bifurcations we
find have been described already in the Morris–Lecar model (Tsumoto et al. 2006;
Zhao and Gu 2017; Jia 2018), we believe that this is the first work to describe this
structure in pacemaker dynamics of SMCs. Moreover this work is a necessary first
step towards understanding spatiotemporal behaviour in networks of SMCs connected
electrically by gap junctions. Finally, conclusions are presented in Sect. 4.

2 Model Formulation

2.1 Muscle Cell Model

Gonzalez-Fernandez and Ermentrout (1994) consider a muscle cell model with exter-
nal current set to zero to study pacemaker dynamics. The model consists of the three
ODEs

C
dv

dt
= −gL(v − vL) − gKn(v − vK) − gCam∞(v)(v − vCa), (1)
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dn

dt
= λn(v)

(
n∞(v,Cai ) − n

)
, (2)

dCai
dt

= ( − αgCam∞(v)(v − vCa) − kCa Cai
)
ρ(Cai ), (3)

where v is the membrane potential, n is the fraction of open potassium channels, and
Cai is the cytosolic concentration of calcium. The system parameters gL, gK, and gCa
are the maximum conductances for the leak, potassium, and calcium currents, respec-
tively, while vL, vK and vCa are the corresponding Nernst reversal potentials. Also C
is the cell capacitance, kCa is the rate constant for cytosolic calcium concentration,
and ρ models the calcium buffering. The auxiliary functions in the model are:

m∞(v) = 0.5

(
1 + tanh

(
v − v1

v2

))
, (4)

n∞(v,Cai ) = 0.5

(
1 + tanh

(
v − v3(Cai )

v4

))
, (5)

v3(Cai ) = −v5

2
tanh

(
Cai − Ca3

Ca4

)
+ v6, (6)

λn(v) = φn cosh

(
v − v3(Cai )

2v4

)
, (7)

ρ(Cai ) = (Kd + Cai )2

(Kd + Cai )2 + Kd(BT)
, (8)

where n∞ [m∞] is the fraction of open potassium [calcium] channels at steady state,φn

is the rate constant for the kinetics of the potassiumchannel, Kd is the ratio of backward
and forward binding rates for calcium and buffer reaction (Sala and Hernandez-Cruz
1990), and BT is the total concentration of the buffers. For further details seeGonzalez-
Fernandez and Ermentrout (1994). The parameter values of Gonzalez-Fernandez and
Ermentrout (1994) are listed in Table 1.

2.2 Model Reduction

To analyse the model, we first check the effects of each ionic current on pacemaker
activity. To do this, we block the conductances for the leak, Ca2+, and K+ currents in
turn. Over a range of parameter values, we found that pacemaker activity persists if
the leak current conductance gL is blocked, but is absent if the conductances gCa and
gK for the Ca2+ and K+ currents are blocked (Fig. 1 shows an example). This tells us
that the Ca2+ and K+ currents are required for pacemaker activity in the model.

We now reduce system (1)–(3) to two equations. Our reduction is based on the
behaviour of the time-dependent quantity v3. Equation (6) shows that the value of v3
has the upper and lower bounds v6+ v5

2 and v6− v5
2 , respectively. Using the parameter

values of Table 2 and a numerical solution to system (1)–(3), we see from Fig. 2 that
the value of v3 spends a high proportion of time close to its upper bound (after transient
dynamics have decayed). This motivates a reduction by fixing v3 to the value of its
upper bound.We thus replace (6) with v3 = v∗

3 , where v∗
3 = v6+ v5

2 . See already Fig. 4
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Table 1 Model parameter values
are taken from
Gonzalez-Fernandez and
Ermentrout (1994)

Parameter Value Unit

v1 − 22.5 mV

v2 25.0 mV

v4 14.5 mV

v5 8.0 mV

v6 − 15.0 mV

Ca3 400.0 nM

Ca4 150.0 nM

φn 2.664 s−1

vL − 70.0 mV

vK − 90.0 mV

vCa 80.0 mV

C 1.9635 × 10−14 CmV−1

gL 7.854 × 10−14 Cs−1 mV−1

gK 3.1416 × 10−13 Cs−1 mV−1

gCa 1.57 × 10−13 Cs−1 mV−1

Kd 1.0 × 103 nM

BT 1.0 × 105 nM

α 7.9976 × 1015 nMC−1

kCa 1.3567537 × 102 s−1

which shows that the bifurcation structure of the resulting reduced model is similar
to that of the full model. The equilibria undergo the same sequences of bifurcations
in the same order, which indicates that the reduction does not significantly alter the
qualitative dynamics. The assumption of constant v3 reduces the number of equations
to two because now v and n are decoupled from Cai . The reduced system is

C
dv

dt
= −gL(v − vL) − gKn(v − vK) − gcam∞(v)(v − vca), (9)

dn

dt
= λn(v) (n∞(v) − n) , (10)

where

n∞(v) = 0.5

(
1 + tanh

(
v − v∗

3

v4

))
, (11)

λn(v) = φn cosh

(
v − v∗

3

2v4

)
, (12)

and m∞(v) is unchanged from (4). Note that this is the Morris–Lecar model without
external current.
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Fig. 1 Time series of the membrane potential v when the three conductances are blocked: a the leak channel
is blocked (gL); b the Ca2+ channel is blocked (gCa); c the K+ channel is blocked (gK) (Color figure online)

Table 2 Parameter values for the
nondimensionalised model
(14)–(15)

Parameter Value

v̄1 − 0.2813

v̄2 0.3125

v̄3 − 0.1380

v̄4 0.1812

ψ 0.1665

v̄L − 0.875

v̄K − 1.125

ḡL 0.25

ḡK 1.0

ḡCa 0.4997
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0 1 2 3 4 5 6 7 8 9 10

Fig. 2 A plot of v3 against time for solutions to (1)–(6) with the parameters of Table 1 (Color figure online)

2.3 NondimensionalisedModel

We nondimensionalise (9)–(10) by introducing dimensionless variables V and τ . Let

v = V Qv, t = τQt , (13)

for some characteristic voltage Qv and time Qt . To choose values for Qv and Qt , we
first observe that the range of the action potential is vK ≤ v ≤ vCa (seeTable 1, Fig. 3a).
Hence the maximum variation of the action potential is less than vCa − vK = 170mV.
This value is roughly the same order of magnitude as vCa; therefore, we choose the
characteristic voltage Qv to be vCa. Simple choices for the characteristic time include
Qt = C

gK
= 0.0625 and Qt = 1

φn
= 0.3754.We choose Qt = C

gK
for the characteristic

time because it is faster than 1
φn
. Substituting Qv = vCa and Qt = C

gK
into (9)–(10)

produces the dimensionless version of the model:

dV

dT
= −ḡL(V − v̄L) − ḡKN (V − v̄K) − ḡCaM∞(V )(V − 1), (14)

dN

dT
= ψλ(V )(N∞(V ) − N ), (15)

where

M∞(V ) = 0.5

(
1 + tanh

(
V − v̄1

v̄2

))
, (16)

N∞(V ) = 0.5

(
1 + tanh

(
V − v̄3

v̄4

))
, (17)
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Fig. 3 A time series of the membrane potential for a the full model with the parameter values in Table 1 and
initial condition (v, n,Cai ) = (0, 0, 0), b the reduced model, and c the nondimensionalised model with the
parameter values in Table 2 and initial condition (V , N ) = (0, 0) (Color figure online)

λ(V ) = cosh

(
V − v̄3

2v̄4

)
, (18)

and

ḡi = gi
gK

, v̄i = vi

vCa
, ψ = Cφn

gK
, i = L,K,Ca, 1, 2, 3, 4.

The parameter values for this model are given in Table 2.

2.4 Excitable Dynamics of the Full, Reduced, and NondimensionalisedModels

The fullmodel (1)–(3), the reducedmodel (9)–(10), and the nondimensionalisedmodel
(14)–(15) were integrated numerically using the standard fourth-order Runge–Kutta
method using a step size of 0.05 in the numerical software XPPAUT (Ermentrout
2002). Since our interest is primarily the membrane potential, we focus mostly on its
dynamics. The time evolution of the membrane potential for the three models with
the parameter values in Tables 1 and 2 reveal that they are in an oscillatory state (see
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(a) (b)

(c) (d)

Fig. 4 Bifurcation diagrams of a the full model (1)–(3) with v1 as the bifurcation parameter, b the reduced
model (9)–(10) with v1 as the bifurcation parameter and c the nondimensionalised model (14)–(15) with v̄1
as the bifurcation parameter. The remaining parameter values are given in Tables 1 and 2. Panel d shows the
period of the oscillations in Fig. 4c for the nondimensionalised model. Black [magenta] curves correspond
to equilibria [periodic orbits]. Solid [dashed] curves correspond to stable [unstable] solutions. HB: Hopf
bifurcation; SN: saddle-node bifurcation (of an equilibrium); SNC: saddle-node bifurcation of a periodic
orbit; SNIC: saddle-node on an invariant circle bifurcation (Color figure online)

Fig. 3). These self-sustained oscillations are consistent with the work of González-
Miranda (2014) on pacemaker dynamics for the full Morris–Lecar model when the
external current and the leak conductance are set to zero.

Next, we verify the excitability property of the model by varying the voltage asso-
ciated with the fraction of open K+ channels as a bifurcation parameter. Since v1 is
dependent on transmural pressure (Gonzalez-Fernandez and Ermentrout 1994), it is
considered to be the main bifurcation parameter in the full model. For the reduced
model, this parameter is v̄1. We choose a range of values of v1 and v̄1 for which the
systems either converge to a steady state (absence of vasomotion) or oscillate (presence
of vasomotion). We use values of v1 between − 40 and − 10 mV, which corresponds
to values of v̄1 between − 0.5 and − 0.125. Figure 4a–c shows the bifurcation dia-
grams of the full, reduced and nondimensionalised models. A detailed discussion of
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the bifurcation diagrams, particularly for the nondimensionalised model, is given in
Sect. 3.

3 Bifurcation Analysis of Type I and Type II Excitability

Here we investigate the dynamics of the nondimensionalised model (14)–(15) via a
bifurcation analysis. In Sect. 3.1, the influence of different model parameters onmodel
behaviour is considered. Then in Sect. 3.2 we relate transitions between Type I and
Type II excitability to codimension-two bifurcations.

3.1 Changes to the Dynamics as One Parameter is Varied

As shown in Fig. 3c, the nondimensionalised model exhibits stable oscillations for
the parameter values of Table 2. Here we study how the dynamics changes as the
parameters v̄1, v̄3, and v̄L are varied from their values in Table 2. First we consider
v̄1. A bifurcation diagram is shown in Fig. 4c. We observe the system has a unique
equilibrium except between two saddle-node bifurcations, SN1 and SN2. To the right
of SN2 the lower equilibrium branch is the only stable solution of the system. The
saddle-node bifurcation SN2 is in fact a SNIC bifurcation (saddle-node on an invariant
circle) as here there exists an orbit homoclinic to the equilibrium (Kuznetsov 1995). To
the left of SN2, this orbit persists as a stable periodic orbit. Thus here (14)–(15) model
SMC activity with Type I excitability (Hodgkin and Huxley 1952; Ermentout 1996;
Izhikevich 2007). As we pass through the SNIC bifurcation by decreasing the value
of v̄1, the excitable state changes to periodic oscillations. As shown in Fig. 4d, the
period of the oscillations decreases from infinity as a consequence of the homoclinic
connection.

Upon further decrease in the value of v̄1, the stable periodic orbit loses stability
in a saddle-node bifurcation (SNC). The resulting branch of unstable periodic orbits
terminates in a subcritical Hopf bifurcation (HB). Between these bifurcations, the
system is bistable because the upper equilibrium branch is stable to the left of the
Hopf bifurcation.

Next we vary the value of the parameter v̄3. This is because it is of biological
interest to understand the influence of transmural pressure. In the full model (1)–(3),
transmural pressure is associated with the parameter v6, so in the nondimensionalised
model it is associated with v̄3 through v∗

3 = v6 + v5
2 . Hence we can examine the

influence of transmural pressure by using v̄3 as a bifurcation parameter.
As shown in Fig. 5a, as we increase the value of v̄3 a unique equilibrium loses

stability in a supercritical Hopf bifurcation HB1 then regains stability in a subcritical
Hopf bifurcation HB2. Therefore in this case the system exhibits Type II excitabil-
ity. The stable oscillations are created in HB1 with finite period (see Fig. 5b). They
subsequently lose stability at the saddle-node bifurcation SNC and terminate at HB2.

Lastly, variation of v̄L produces the bifurcation diagram Fig. 6. This has the same
type of bifurcation structure as Fig. 4b (except in reverse). Thus increasing the value
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(a) (b)

Fig. 5 a A bifurcation diagram of the nondimensionlised model (14)–(15) with v̄3 as the bifurcation
parameter and other parameter values as given in Table 2. b A plot of the periodic oscillations as a function
of parameter v̄3. The labels and other conventions are as in Fig. 4 (Color figure online)

Fig. 6 A bifurcation diagram of the nondimensionalised model (14)–(15) with v̄L as the bifurcation param-
eter and other parameter values as given in Table 2. The labels and other conventions are as in Fig. 4 (Color
figure online)

of v̄L results in the same qualitative changes to the dynamics as decreasing the value
of v̄1. In particular the excitability is Type I.

3.2 Transitions Between Types of Excitability

In this section, we perform a two-parameter bifurcation analysis of the nondimension-
alised model (14)–(15) by varying the parameters v̄1 and v̄3. This is summarised by
the two-parameter bifurcation diagram, Fig. 7, which was produced via the numeri-
cal continuation software AUTO-07p (Doedel et al. 2012). Two of the one-parameter
bifurcation diagrams described above are slices of Fig. 7. Specifically Fig. 4c has the
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Fig. 7 A two-parameter bifurcation diagram of the nondimensionalised model (14)–(15) in the (v̄1, v̄3)-
plane for the parameter values of Table 2. The values of v̄3 in l1, l2, l3, l4, l5 and l6 are 0.45, 0.25, − 0.047,
− 0.088, − 0.26 and − 0.32, respectively. The black curves are the loci of codimension-one bifurcations
labelled as follows: HB: Hopf bifurcation, SN: saddle-node bifurcation (or SNIC), HC: homoclinic bifurca-
tion, and SN: saddle-node bifurcation of periodic orbit. The labels for the codimension-two bifurcations are
explained in Table 4. The invariant sets that exist in each region are listed in Table 3 (Color figure online)

value of v̄3 fixed at − 0.1375 and Fig. 5a has the value of v̄1 fixed at − 0.2813. Fig. 7
is divided into regions with eight qualitatively different types of dynamical behaviour,
with enlargements in Figs. 8a, 9a, 11a and 11b.We have assigned each region a number
and a colour, see Table 3.

In the remainder of this section, we describe Fig. 7 and consequences to transitions
between Type I and II excitability by studying slices at six different values of v̄3.
Fig. 7 includes five different codimension-two bifurcations summarised by Table. 4
and discussed below.

For sufficiently large values of v̄3, the only bifurcations are the two saddle-node
bifurcations SN1 and SN2, see Fig. 8a which shows a magnification of Fig. 7. Thus
for the slice l1 there are no periodic solutions, Fig. 8b

As we decrease the value of v̄3 a Bogdanov-Takens bifurcation (Takens 1974;
Bogdanov 1975), denoted BT1, occurs on the saddle-node locus SN1 at v̄3 ≈ 0.3792.
This is a codimension-two point from which loci of homoclinic and subcritical Hopf
bifurcations emanate, denoted HC and HB1. As known from the theory of Bogdanov-
Takens bifurcations (Kuznetsov 1995) and as seen in Fig. 8a, these loci are tangent to
SN1 at the codimension-two point. Thus for a slice below BT1, such as l2 for which
v̄3 = 0.25, apart from the saddle-node bifurcations already observed there are now
also homoclinic andHopf bifurcations betweenwhich there exists an unstable periodic
orbit, Fig. 8c. Observe also that upon crossing BT1 the interval of values of v̄1 in which
the system is bistable changes from endpoints at SN2 and SN1 (for l1) to endpoints at
SN2 and HB1 (for l2).
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(a)

(b) (c)

Fig. 8 a An enlargement of Fig. 7 showing lines l1 and l2. The filled diamond is a Bogdanov-Takens
bifurcation. bA one-parameter bifurcation diagram along l1 with v̄3 = 0.45. cA one-parameter bifurcation
diagram along l2 with v̄3 = 0.25. HB: Hopf bifurcation, SN: saddle-node bifurcation, SNC: saddle-node
bifurcation of a periodic orbit, HC: homoclinic bifurcation (Color figure online)

As the value of v̄3 is decreased further, HB1 shifts to the left and a locus of saddle-
node bifurcations of the periodic orbit, SNC, emanates from the codimension-two
point RHom on HC at v̄3 ≈ 0.0095, see Fig. 9a. Thus below this point there exists a
stable periodic orbit between SNC and HC, such as for the slice l3, Fig. 9b. For this
slice, as the value of v̄1 is decreased stable oscillations are created at HC. Here there
is a small region of tristability: stable oscillations coexist with two stable equilibria,
see Fig. 10.

Upon further decrease of v̄3, the locus HC collides tangentially with SN2 at the
codimension-two point NSH1. This is known as a non-central saddle-node homoclinic
bifurcation, see for instance (Govaerts and Sautois 2005). The collision produces the
locus SNIC (saddle-node of an invariant circle). Thus immediately below NSH1 the
system exhibits Type I excitability. The system transitions from a stable equilibrium to
a stable periodic orbit at the SNIC bifurcation, such as for the slice l4, Fig. 9c (and as
described earlier, Fig. 4b). Thus the point NSH1 marks the onset of Type I excitability.
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(a)

(b) (c)

Fig. 9 a An enlargement of Fig. 7 showing lines l3 and l4. The filled circle is a non-central saddle-
node homoclinic bifurcation. b A one-parameter bifurcation diagram along l3 with v̄3 = −0.047. c A
one-parameter bifurcation diagram along l4 with v̄3 = − 0.088. HB: Hopf bifurcation, SN: saddle-node
bifurcation, SNC: saddle-node bifurcation of a periodic orbit, SNIC: saddle-node on an invariant circle
bifurcation, HC: homoclinic bifurcation (Color figure online)

This has been observed previously for the reduced Morris–Lecar model with external
current (Tsumoto et al. 2006).

Upon further decrease to the value of v̄3, a second Bogdanov-Takens bifurcation,
denoted BT2, occurs on the SN1 locus at v̄3 ≈ − 0.2429 (see Fig. 11b). This generates
loci of homoclinic and supercritical Hopf bifurcations. The homoclinic locus termi-
nates nearby at another NSH2 bifurcation where the SNIC locus reverts to a locus
of saddle-node bifurcations. The slice l5, Fig. 11c, is below these two codimension-
two points. Here the system exhibits Type II excitability as stable oscillations are
created at the Hopf bifurcation. This shows that the transition between Type I and
Type II excitability for the parameter regime we have considered is governed by the
Bogdanov–Takens bifurcation BT2, and this is in agreement with the result in (Zhao
and Gu 2017) where the authors studied bifurcation mechanisms induced by autapse
in the Morris–Lecar model.
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Fig. 10 A phase portrait of the nondimensionalised model (14)–(15) on line l3 at v̄3 = − 0.047 showing
tristability. The blue and red curves are stable and unstable periodic orbits. The magenta and orange curves
are the nullclines for N and V . The black curves are the solution trajectories. The blue and red circles are
stable and unstable equilibria (Color figure online)

Fig. 11 aAn enlargement of Fig. 7 showing lines l5 and l6, b an enlargement of panel (a). cAone-parameter
bifurcation diagram along l5 with v̄3 = − 0.26. d An enlargement of panel (c). HB: Hopf bifurcation, SN:
saddle-node bifurcation, SNC: saddle-node bifurcation of a periodic orbit (Color figure online)

123

Author's personal copy



Numerical Bifurcation Analysis of Pacemaker Dynamics... Page 17 of 22    95 

Ta
bl
e
3

A
su
m
m
ar
y
of

th
e
ei
gh

td
if
fe
re
nt

co
m
bi
na
tio

ns
of

eq
ui
lib

ri
a
an
d
pe
ri
od

ic
or
bi
ts
th
at
ar
is
e
in

Fi
g.

7
an
d
its

m
ag
ni
fic
at
io
ns
,F

ig
s.
8a
,9

a,
11

a,
an
d
11

b

R
eg
io
n

C
ol
ou

r
E
xi
st
en
ce

of
eq
ui
lib

ri
a
an
d
pe
ri
od

ic
or
bi
ts

1 ©
O
ne

st
ab
le
eq
ui
lib

ri
um

,n
o
pe
ri
od
ic
or
bi
ts
(r
es
ts
ta
te
)

2 ©
Tw

o
st
ab
le
eq
ui
lib

ri
a,
on

e
un

st
ab
le
eq
ui
lib

ri
um

,n
o
pe
ri
od

ic
or
bi
ts

3 ©
O
ne

st
ab
le
eq
ui
lib

ri
um

,t
w
o
un

st
ab
le
eq
ui
lib

ri
a,
no

pe
ri
od

ic
or
bi
ts

4 ©
O
ne

un
st
ab
le
eq
ui
lib

ri
um

,o
ne

st
ab
le
pe
ri
od

ic
or
bi
t

5 ©
Tw

o
st
ab
le
eq
ui
lib

ri
a,
on

e
un

st
ab
le
eq
ui
lib

ri
um

,o
ne

un
st
ab
le
pe
ri
od

ic
or
bi
t

6 ©
Tw

o
st
ab
le
eq
ui
lib

ri
a,
on

e
un

st
ab
le
eq
ui
lib

ri
um

,o
ne

st
ab
le
pe
ri
od

ic
or
bi
t,
on

e
un

st
ab
le
pe
ri
od

ic
or
bi
t(
tr
is
ta
bi
lit
y)

7 ©
O
ne

st
ab
le
eq
ui
lib

ri
um

,o
ne

st
ab
le
pe
ri
od

ic
or
bi
t,
on

e
un

st
ab
le
pe
ri
od

ic
or
bi
t

8 ©
O
ne

st
ab
le
eq
ui
lib

ri
um

,t
w
o
un

st
ab
le
eq
ui
lib

ri
a,
on

e
st
ab
le
pe
ri
od

ic
or
bi
t

123

Author's personal copy



   95 Page 18 of 22 H. O. Fatoyinbo et al.

Table 4 Abbreviations and notations of codimension-two bifurcations

Bifurcation Abbreviation Label

Cusp bifurcation CP

Bogdanov-Takens bifurcation BTi i = 1, 2

Generalised Hopf bifurcation GH

Resonant homoclinic bifurcation RHom

Non-central saddle-node homoclinic bifurcation NSHi i = 1, 2

Fig. 12 A one-parameter bifurcation diagram along l6 with v̄3 = − 0.32 (shown in Figs. 7, 11a). HB: Hopf
bifurcation (Color figure online)

Finally, as v̄3 is decreased further the Hopf locus HB1 changes from subcritical to
supercritical at a generalised Hopf bifurcation at v̄3 ≈ − 0.2708 and the saddle-node
loci SN1 and SN2 collide and annihilate in a cusp bifurcation CP at v̄3 ≈ − 0.2727.
Below these two codimension-two points, the only bifurcations that remain are two
supercritical Hopf bifurcations. The slice l6, Fig. 12, shows a typical bifurcation dia-
gram. Here the excitability is Type II and there is no bistability.

4 Conclusion

In this paper, we have studied a pacemaker model of SMCs where the interactions
between ion fluxes, in particular Ca2+ and K+, results in spontaneous oscillations. We
established that both Ca2+ and K+ currents are required for the pacemaker activity.
Upon varying the voltage associated with the opening of half the K+ channels, v1,
the full three-dimensional model exhibits various dynamical features observed in the
conventional models for excitable cells. With the aid of bifurcation diagrams, we
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showed that the reduced two-dimensional model preserves the dynamical properties
of the full model qualitatively.

The main motivation of this work was to understand the types of excitability exhib-
ited by the pacemaker model. We showed that the model can be of Type I or Type II
excitability depending on how parameters are varied. In particular, we determined the
bifurcation structure of the (v̄1, v̄3)-parameter plane to show transitions between the
two types of excitability. We found that, as in Tsumoto et al. (2006) which used dif-
ferent parameters including nonzero external current, a Bogdanov-Takens bifurcation
demarcates the transition between Type I and Type II excitability.

We also revealed that the biologically important parameter v̄1 affects the type of
excitability and nature of the oscillations more generally. The results of the model
agree with experimental observations on pacemaker behaviour of smooth muscle cells
(Meyer et al. 1983, 1988; Harder 1984; Segal and Duling 1989) and neural cells
(Connor 1985; Ramirez et al. 2004).

It is hoped the results may find application in models and experimental studies of
physiological and pathophysiological responses inmuscle cells. Certainly the observa-
tion that the dynamics of SMCs are particularly sensitive to parameter values has been
utilised pharmacologically in therapeutics (Droogmans and Casteels 1989; Pogátsa
1994).

Our analysis concerned a single SMC; however, SMCs are interconnected through
gap junctions and action potentials can propagate between them. It remains to analyse
the spatiotemporal behaviour of coupled pacemaker SMCs. Some experimental and
computational studies of SMCs have shown that voltage-dependent inward Na+ cur-
rent is important in EMC activity (Berra-Romani et al. 2005; Ulyanova and Shirokov
2018), in future work we will incorporate the Na+ current into our model to study its
effect on pacemaker dynamics of SMCs.

Supplementary Information

XPPAUT was used for numerical integration, AUTO-07p for bifurcation analysis and
the figures are reproduced in MATLAB. The codes are available from the correspond-
ing author upon request.
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