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Abstract

Spatiotemporal patterns are common in biological systems. For electrically-coupled
cells previous studies of pattern formation have mainly used external forcing as the
main bifurcation parameter. The purpose of this paper is to show that spatiotemporal
patterns in electrically-coupled smooth muscle cells occur even in the absence of forcing.
We study a reaction-diffusion system with the Morris-Lecar equations and observe a
wide range of spatiotemporal patterns for different values of the model parameters.
Some aspects of these patterns are explained via a bifurcation analysis of the system
without coupling — in particular Type I and Type II excitability both occur. We show
the patterns are not due to a Turing instability and use travelling wave coordinates to
analyse travelling waves.

1 Introduction

Smooth muscle cells (SMCs) are widely spread across organs and tubes where they provide
a variety of functions in the body. The contraction and relaxation of SMCs regulates organ
function, such as the flow rate of blood vessels [55, 79]. SMCs help with digestion and
nutrient collection in the gastrointestinal tract [11, 34], and regulate bronchiole diameter
in the respiratory system [16]. In the urinary system, they play a role in removing toxins
and electrolyte balance [2, 6]. Like other excitable cells (e.g. neuron, endocrine, and skeletal
cells), when stimulated SMCs can generate a large electrical signal (action potential), and
contract in response. This process is known as electro-mechanical coupling.

Electro-mechanical coupling in the cell membrane of a SMC is mediated by the influx
of extracellular Ca2+ through voltage-gated Ca2+ channels and Ca2+ release from the cell’s
internal Ca2+ store, the sacroplasmic reticulum. The elevation of the intracellular Ca2+
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concentration causes the membrane potential to increase rapidly, hence the cell membrane is
depolarised, and this results in the opening of the K+ channels. The efflux of K+ then leads
to the repolarisation of the cell. The repetition of this activity results in periodic oscillations
that elicit vasomotion, that is, the contraction and relaxation of the vessel’s cell wall.

Oscillations are driven by applied current [41], agonists [83, 51], temperature [5, 26], and
pressure [52]. Several experimental studies have investigated the electrical activity induced
by external stimuli in excitable cells [27, 56, 57]; see also [76, 23, 51, 44] for computational
studies.

Communication between cells, primarily excitable and non-excitable cells, helps regulate
a wide range of cellular activities, for example, receiving and transmitting of signals in the
central nervous system [21, 48], the release of hormones into extracellular fluid in endocrine
cells [78, 67, 17], and contractile activity in muscles [61, 59, 84, 10]. Cells are connected
to their immediate neighbors through different mechanisms [46, 31, 81]. SMCs are coupled
through gap junctions which can be one of three types: Ca2+, inositol triphospate (IP3),
or membrane potential (electrical) [50, 33, 51]. A schematic representation of electrically
coupled SMCs is shown in Fig. 1. Gap junctional communications have been observed in
other cell types, including germ cells in testis [19], fibroblasts [7], and astrocytes [30].

Figure 1: A schematic representation of coupled smooth muscle cells.

The dynamics across a large number of coupled cells can form of simple travelling waves,
or complex spatiotemporal patterns. For example, as revealed in experiments, spiral waves
during heart contractions can cause cardiac arrhythmia [43, 68]. Epileptic seizures in the
cortex and hallucinations in the retina or visual cortex can be induced by travelling waves
[86, 42, 72, 70].

The dynamical behaviour of a single cell is often modelled by a set of ordinary differen-
tial equations. Many models have been used and many are strongly related to that given
by [41]. The communication between a large number of cells can be modelled by incorpo-
rating spatial-dependence and using a diffusion term. The reaction-diffusion framework for
spatiotemporal pattern formation originates with Turing’s seminal paper [88]. Turing used
a reaction-diffusion system to explain how diffusion-driven instability in chemical reactions
can result in what are now known as Turing patterns. Pattern formation has subsequently
been studied extensively in diverse applications. In ecology, the Lotka-Volterra model for two
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interacting species exhibits both Turing and non-Turing patterns when a diffusion term is
added [8, 80, 58]. In epidemiology, spatial patterns have been observed in diffusive epidemic
models designed to investigate the spread and control of infectious diseases [45, 13]. Various
spatiotemporal patterns have been observed in cellular dynamics due to electrophysiological
processes in cells and tissues [44, 73, 47, 90]. Also, spatial patterns have been generated in a
variety of physical and mechanical systems [69, 71, 37].

Many studies have been published on spatiotemporal patterns in networks of excitable
cells [28, 35, 49, 54, 65, 12]. Tsyganov et. al. ([87]) examined the Fitzhugh-Nagumo model
with piecewise-linear reaction terms to study spatiotemporal behaviour in neurons. They
found complex dynamical behaviour including the collision and reflection of excitation waves.
Meier et. al. ([62]) studied a one-dimensional (1D) Morris-Lecar reaction-diffusion system
to investigate complex spatiotemporal formation in a network of neurons. Propagation of
excitable waves and the spatiotemporal dynamics of excitable neuronal populations in 1D
and 2D using Morris-Lecar model were explored by Mondal et al. ([64]). Zhu and Liu
([92]) studied a model with time delay between connected neurons and observed that the
spatiotemporal dynamics depends critically on the bifurcation structure of individual neurons.
Also, Ali et. al. ([3]) investigated pattern formation in a spatially-extended Wilson-Cowan
system. However, most of these studies focused on patterns and waves that are driven by
an external stimulus. The purpose of this paper is to stress that an external stimulus is not
necessary for spatiotemporal patterns to occur. Pacemaker dynamics refers to spontaneous
oscillations in cells. Experimental studies have shown that pacemaker dynamics occurs in
many types of SMCs, such as the gastrointestinal tract, urinary tract, lymphatic vessels,
arteries, and veins [85, 36, 29, 89, 60]. Also, there have been several computational studies
of pacemaker dynamics in muscle cells [91, 74, 15, 39].

In this paper we focus on pacemaker electro-mechanical coupling activity in arterial SMCs
due to changes in the vessel’s transmural pressure, that is, the pressure gradient across the
vessel wall. We study a spatially-extended two-variable nondimensionalised Morris-Lecar
model with no applied current. As shown in our previous work [25], without diffusion the
model is a reduced form of the three-dimensional ODE model of Gonzalez-Fernandez and
Ermentrout ([32]) for the dynamics of pacemaker vasomotion in SMCs of small arteries.

In Section 2 we state the model equations. In Section 3 we summarise the dynamics of
the model without diffusion using the voltage associated with the K+ and Ca2+ channels as
bifurcation parameters. Oscillations can arise via both Type I and Type II excitability. This
distinction of two types of excitability was first described by [40]. For Type I excitability
oscillations arise via a saddle-node on invariant circle (SNIC) bifurcation, whereas for Type
II excitability oscillations arise via a Hopf bifurcation [75]. In Section 4 we show that the
spatiotemporal patterns that emerge are non-Turing patterns due to violation of Turing’s
instability criteria. Numerical simulations of the reaction-diffusion model is carried out in
Section 5. Various spatiotemporal patterns including travelling pulses and fronts are explored.
The existence of the travelling waves is analysed in Section 6. In the final section some
conclusions are presented.
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2 A nondimensionalised Morris-Lecar system with dif-

fusion

We consider a nondimensionalised reaction-diffusion system to model the dynamics of a
population of coupled SMCs through passive electrical coupling of adjacent cells. The reaction
term in the model is based on our previous study on an isolated SMC [25]. The model
equations are

∂V

∂τ
= D

∂2V

∂X2
− ḡL(V − v̄L)− ḡKN(V − v̄K)− ḡCaM∞(V )(V − 1), (2.1)

∂N

∂τ
= λ(V )(N∞(V )−N), (2.2)

where V (X, τ) is the membrane potential and N(X, τ) is the fraction of open K+ channels.
The system parameter D ≥ 0 is the diffusion coefficient, ḡL, ḡK, and ḡCa are conductances
per unit area for the leak, potassium, and calcium currents respectively, while v̄L and v̄K are
the corresponding Nernst reversal potentials (equilibrium potentials). The fraction of open
calcium [potassium] channels at steady state M∞ [N∞] and the time scale for the opening of
the potassium channel, λ(V ) are:

M∞(V ) =
1

2

(
1 + tanh

(
V − v̄1
v̄2

))
, (2.3)

N∞(V ) =
1

2

(
1 + tanh

(
V − v̄3
v̄4

))
, (2.4)

λ(V ) = ψ cosh

(
V − v̄3

2v̄4

)
, (2.5)

where v̄1 and v̄3 measure the potential at which potassium and calcium channels are half-
opened, ψ is a time constant, and v̄2 and v̄4 are additional parameters. as listed in [25]: v̄1 =
−0.2813, v̄2 = 0.3125, v̄3 = −0.1380, v̄4 = 0.1812, ψ = 0.1665, v̄L = −0.875, v̄K = −1.125,
ḡL = 0.25, ḡK = 1.0, and ḡCa = 0.4997.

In this paper we consider a one-dimensional spatial domain Ω = [−L,L] for the values
of X. At the boundaries, X = ±L, we use no-flux boundary conditions, however we are
primarily concerned with the spatiotemporal patterns that emerge away from the boundaries.

3 The dynamics of a single cell

In this section we summarise the dynamics of (2.1)–(2.2) in the absence of diffusion, i.e. D =
0. We show how stable oscillations are created through either Type I or Type II excitability.
This is important to the nature of the spatiotemporal dynamics described in Section 5. More
details on the dynamics of a single cell can be found in [25, 24].

Figs. 2(a)–(c) show bifurcation diagrams as v̄1, v̄3, and ψ are varied from their values
as listed in Section 2. These were computed numerically using auto [20]. Spontaneous
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oscillations in (2.1)–(2.2) are triggered by a change in transmural pressure, therefore we use
pressure-dependent parameters, v̄1 and v̄3, as bifurcation parameters.

Fig. 3.1a shows the result of varying v̄1. The system has a unique equilibrium except
between saddle-node bifurcations SN1 and SN2 where there are three equilibria: one stable
(lower branch) and two unstable (middle and upper branch). As the value of v̄1 is increased
from the smallest value shown in the diagram, the upper equilibrium branch loses stability
in a subcritical Hopf bifurcation (HB). The unstable limit cycle produced here gains stability
via a saddle-node bifurcation (SNC). Upon further increasing the value of v̄1 the stable limit
cycle is destroyed at the saddle-node bifurcation SN2. This is an example of a saddle-nodle
on invariant circle bifurcation (SNIC) where the limit cycle is replaced by a heteroclinic
connection between the two equilibria [53]. As a consequence, the period of the limit cycle
approaches infinity as the bifurcation is approached. Here the system displays Type I ex-
citability as stable oscillations are created in a SNIC bifurcation by appropriately decreasing
the value of v̄1.

Next we vary the value of v̄3. As shown in Fig. 2b, as we increase the value of v̄3 a unique
equilibrium loses stability in a supercritical Hopf bifurcation HB1 then regains stability in
a subcritical Hopf bifurcation HB2. The stable oscillations are created at HB1 with finite
period. They subsequently lose stability at a saddle-node bifurcation and terminate at HB2.
In this case the system displays Type II excitability since the periodic oscillations arises
through a Hopf bifurcation.

Finally Fig. 3.1c shows how the dynamics changes under variation to the value of ψ. The
system has three equilibria for all values of ψ > 0. For relatively low and intermediate values
of ψ, there exist one stable (lower branch) and two unstable (upper and middle branch)
equilibria. By increasing ψ, a stable limit cycle emanates through a homoclinic bifurcation
(HC) and upon further increase of ψ terminates in a supercritical Hopf bifurcation (HB). As
in Fig. 3.1b the excitability here is Type I. Between the homoclinic and Hopf bifurcations
the system is bistable as the limit cycle coexists with a stable equilibrium. As shown in [25]
for different parameter values the system has three coexisting stable solutions.

4 Linear stability analysis

Alan Turing ([88]) hypothesised that spatially inhomogeneous patterns may arise in a reaction-
diffusion system if a spatially homogeneous steady state is stable in the absence of diffusion
and destabilised as result of diffusion. Such instability is referred to as diffusion-driven in-
stability or Turing instability. The conditions required for the onset of Turing instability
have been well studied [4, 82, 9, 8]. Here we perform a linear stability analysis of (2.1)–
(2.2) around a spatially homogeneous steady state and show that the conditions for Turing
instability are not satisfied for this system.

As shown in the previous section, in the absence of diffusion (2.1)–(2.2) typically has one
or three equilibria and the stability of these depends on the values of the parameters. Here
let (V ∗, N∗) be a stable equilibrium of (2.1)–(2.2) with D = 0 (i.e. no diffusion) for some
combination of parameter values. Then for (2.1)–(2.2) with D > 0, (V ∗, N∗) represents a
spatially homogeneous state.
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Figure 2: Bifurcation diagrams of (2.1)–(2.2) withD = 0 using v̄1, v̄3, and ψ as the bifurcation
parameters. In each diagram all parameters (except the one being varied) are fixed at the
values listed in Section 2. Black [magenta] curves correspond to equilibria [limit cycles].
Solid [dashed] curves correspond to stable [unstable] solutions. The vertical lines indicate the
parameter values used in Figs. 3, 5, and 6. HB: Hopf bifurcation; SN: saddle-node bifurcation
(of an equilibrium); SNC: saddle-node bifurcation of a limit cycle; SNIC: saddle-node on an
invariant circle bifurcation; HC: homoclinic bifurcation.
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Let
(
V0(X, τ), N0(X, τ)

)
represent the perturbation of a solution to (2.1)–(2.2) from the

steady state, i.e. (
V0
N0

)
=

(
V − V ∗
N −N∗

)
. (4.1)

By linearising (2.1)–(2.2) about (V ∗, N∗) we obtain the following leading-order approximation
to the dynamics of the perturbation:(

V0
N0

)
τ

=

(
D 0
0 0

)(
V0
N0

)
XX

+

(
fV fN
gV gN

)(
V0
N0

)
. (4.2)

The second matrix in (4.2) is the Jacobian matrix of (2.1)–(2.2) evaluated at (V ∗, N∗). By
directly differentiating (2.2) with respect to N we obtain

gN = −ψ cosh

(
V ∗ − v̄3

2v̄4

)
. (4.3)

Formulas for the other three entries in the Jacobian matrix will not be needed.
We now look for a solution to (4.2) of the form (V0, N0)(X, τ) = βe(λτ+ikX), where β is

a constant vector, λ is the growth rate of perturbation in time, and k is the wave number.
While there are many such solutions, we will show that all must have λ < 0. This implies
that for any sufficiently small perturbation (4.1), the corresponding solution to (2.1)–(2.2)
decays to (V ∗, N∗) as t→∞, hence the steady-state is not destabilised [66]. By substituting
the given form into (4.2), (

−k2D + fV − λ fN
gV gN − λ

)
β =

(
0
0

)
. (4.4)

Equation (4.4) is homogeneous in β, thus has a nontrivial solution only if the matrix in (4.4)
is singular.

This implies

λ =
T

2
±
√
T 2 − 4∆

2
, (4.5)

where T = −k2D + fV + gN and ∆ = −k2DgN + fV gN − gV fN denote the trace and
determinant of the matrix in (4.4) when λ = 0. By assumption (V ∗, N∗) is stable in the
absence of diffusion, therefore

fV + gN < 0, fV gN − fNgV > 0. (4.6)

But from (4.3) we always have gN < 0 because ψ > 0 for physical reasons. Therefore T < 0
and ∆ > 0, thus λ < 0 for any D > 0. Thus (V ∗, N∗) is not destabilised by the inclusion of
diffusion and so the spatiotemporal patterns that we describe below are not due to Turing
instability.
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5 Spatiotemporal dynamics of the full model

In this section we explore the effect of varying v̄1, v̄3 and ψ on the spatiotemporal dynamics of
the reaction-diffusion system (2.1)–(2.2). Since the patterns are not due to Turing instability,
as shown in Section 4, we will investigate spatiotemporal dynamics for a wide range of
parameter values, in particular where the steady states may be stable or unstable. We show
that a wide range of spatiotemporal patterns can occur, including travelling pulses, travelling
fronts, and spatiotemporal chaos.

The system (2.1)–(2.2) was solved numerically by using the method of lines. We used a
second-order central finite difference approximation to the spatial derivative using 1000 X-
values per unit interval, and a standard numerical scheme for the time derivative (ode15s in
matlab) [77, 38]. All numerical simulations use no-flux boundary conditions for X ∈ [−L,L]
and initial conditions

V (0, X) = V ∗ +G(X) and N(0, X) = N∗, (5.1)

where (V ∗, N∗) is a homogeneous steady state of (2.1)–(2.2). Different functions G(X)
(specified below) provide different perturbations from the steady state. A linear coordinate
change can be applied to (2.1)–(2.2) to scale the value of D > 0 to any positive number; in
all simulations below we use D = 0.0001.

5.1 The effect of the parameters v̄1, v̄3, and ψ

Now we examine the spatiotemporal patterns exhibited by (2.1)–(2.2) for the values of v̄1,
v̄3, and ψ marked a-f in Figs. 2a to c. In this initial condition (5.1) we use the Gaussian
perturbation,

G(X) = A0 exp

(
−X2

2σ2

)
, (5.2)

with A0 = 0.3 and σ = 0.1.
Fig. 3 shows the resulting spatiotemporal patterns for different values of v̄1. For low

values of v̄1the system has a unique homogeneous steady state (the upper equilibrium branch
in Fig. 3.1a). This steady state is stable and the solution quickly converges to the steady
state as in Fig. 5.1a. Instead with v̄1 just to the right of the Hopf bifurcation, a complex
spatiotemporal pattern emerges, Fig. 5.1b. The solution starts as a pulse at the centre of the
domain due to the initial perturbation. Then the pulse splits into two propagating pulses
that transition to time-periodic oscillations with inhomogeneous patterns at the back as they
move across the domain. Outside the patterned region the solution is periodic corresponding
to the limit cycle of the system with no diffusion. Similar behaviour is observed for values of
v̄1 between the Hopf bifurcation and the SNIC bifurcation. For example in Fig. 3c we have
used v̄1 = 0.25. This is very close to the SNIC bifurcation so now the oscillations outside the
patterned region are of particularly high period.

Beyond the SNIC bifurcation, as in Fig. 5.1d, we again observe complex spatiotemporal
patterns but now oscillations do not occur outside the patterned region because the system
with no diffusion no longer has a stable limit cycle. With a yet larger value of v̄1 the pattern
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Figure 3: Space-time plots of the membrane potential V for the values of v̄1 marked in Fig. 2a.
Specifically (a) −0.325; (b) −0.265; (c) −0.25; (d) −0.248; (e) −0.240; and (f) −0.230. The
initial condition is (5.1) with (5.2), using the upper equilibrium branch of Fig. 2a for the
steady state (V ∗, N∗), and all other parameters are fixed as in Section 2.
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forms a relatively ordered triangular structure bearing an interseting resemblance to the
Sierpinski triangle. Numerical simulations performed over a longer time-scale suggest that
this structure persists indefinitely. Fig. 4 shows a typical profile of the solution at a large
time. However, by increasing the value of v̄1 further, as in Fig. 3f, patterns are no longer
observed. Here the solution simply decays to the stable homogeneous steady state (the lower
equilibrium branch of Fig. 2a).
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Figure 4: The spatial distribution of the (a) membrane potential V ; (b) fraction of open
potassium channel N ; (c) The temporal dynamics for V and N corresponding to patterns in
(a) and (b) for time τ = 1000 at v̄1 = −0.25.

Now we study the spatiotemporal behaviour of the model by varying v̄3 and keeping all
other parameters fixed as in Section 2. Recall that in this case the system in the absence
of diffusion exhibits supercritical and subcritical Hopf bifurcations, see Fig. 2b. The results
of numericals simulations are shown in Fig. 5. For extremely low values of v̄3, the system
returns quickly to the homogeneous steady state. Between the Hopf bifurcations, where the
system in the absence of diffusion has a stable limit cycle, we observe mostly homogeneous
oscillations corresponding to this limit cycle, see Fig. 5b–e. In panels (b) and (c) away from
X = 0 where the perturbation is applied, it takes some time for the solution to settle to
oscillatory behaviour because the initial condition is set very near the value unstable steady
state. In panels (d) and (e) oscillations develop across the domain relatively quickly. In panel
(e), which is just before the subcritical Hopf bifurcation, the initial stimulus creates a pulse
of propagating action potentials. For values of v̄3 beyond the subcritical Hopf bifurcation and
subsequent saddle-node bifurcation SNC (see Fig. 2b), periodic oscillations can be observed
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for a short time across the entire domain, then stabilise to the homogeneous steady state, as
in Fig. 5f.
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Figure 5: Space-time plots of the membrane potential V for the values of v̄3 marked in
Fig. 2b. Specifically (a) −0.3462; (b) −0.3019; (c) −0.2813; (d) −0.23842; (e) −0.1725;
and (f) −0.05565. The initial condition is (5.1) with (5.2), using the stable and unstable
equilibrium branch of Fig. 2b for the steady state (V ∗, N∗), and all other parameters are
fixed as in Section 2.

Finally Fig. 6 the spatiotemporal patterns for the various values of ψ marked in Fig. 2c.
For extremely low values of ψ, the initial perturbation creates a pulse at the centre of the
domain and as time progresses the pulse splits into two travelling pulses propagating in
opposite directions at the same speed (Fig. 6a). A slight increase in the value of ψ leads
to a destabilisation of the pulses that results in an initiation of secondary pulses travelling
in the opposite direction to the primary pulses (Fig. 6b). By increasing the value of ψ
further we are able to see within the τ = 500 time-frame that the secondary pulses collide
with one another and eventually irregular oscillations disseminate across the spatial domain
(Fig. 6c–d). Interestingly, as ψ is varied past the homoclinic bifurcation, the unstable pulses
transition to travelling fronts connecting a stable steady state to an unstable state with
irregular oscillations at the back of the fronts (Fig. 6e). As the value of ψ is increased
further, the upper equilibrium branch gains stability at the Hopf bifurcation so beyond this
bifurcation the system has two stable steady states. In this case the fronts connect one stable
steady state to the other (Fig. 6f).

Fig. 7 shows the solution at τ = 300 for the six values of ψ used in Fig. 6. This shows
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how increasing the value of ψ causes the two travelling pulses to transition into two travelling
fronts via an intermediate phase of spatiotemporal chaos.
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Figure 6: Space-time plots of the membrane potential V for values of ψ as marked in Fig. 2c.
Specifically (a) 0.1; (b) 0.12; (c) 0.13; (d) 0.2; (e) 0.3; and (f) 0.5. The initial condition is
(5.1) with (5.2), using the upper equilibrium branch of Fig. 2a for the steady state (V ∗, N∗),
and all other parameters are fixed as in Section 2. The solution transitions from propagating
pulses travelling in opposite direction to complex spatiotemporal patterns to fronts travelling
in opposite direction.

5.2 Numerical simulations with alternate initial conditions

In this section we consider other perturbation functions G(X) in the initial condition (5.1)
to investigate how the initial condition affects the patterns that develop. First we consider

G(X) = εX, (5.3)

with ε = 0.025. Fig. 8 shows the resulting spatiotemporal patterns for different values of
v̄1. Specifically the six plots use the same parameter values as the corresponding plots in
Fig. 3. In panels (a) and (f) of Fig. 8 the solution simply settles to the stable equilibrium
of the system in the absence of diffusion (as in Fig. 3). In panels (b) and (c) the initial
condition is insufficient to generate the spatiotemporal chaos that was observed in Fig. 3
within the τ = 500 timeframe. By simulating for a longer time we found that in (b) the
solution appeared to converge to homogeneous oscillations matching the stable limit cycle
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Figure 7: Solution profiles at time τ = 300 showing the transitions from travelling pulses to
spatiotemporal chaos and to fronts.

of the system in the absence of diffusion, while in (c) spatiotemporal chaos did arise shortly
after τ = 500, and this is shown in Fig. 9a. Finally in panels (d) and (e) we do observe
spatiotemporal chaos. The particular patterns that emerge appear to have the same features
as those in Fig. 3 suggesting that for both initial conditions the solution is converging to the
same attractor.

For other values of the parameters and other initial conditions we similarly observed that,
broadly speaking, the dynamics of (2.1)–(2.2) settled to the same long-time behaviour as that
described in Sect. 5.1. For example using the parameter values of Fig. 6b, when the initial
condition is changed from (5.2) to (5.3) the result is Fig. 9b which evidently exhibits a similar
structure. We conclude that the profile of the initial perturbation does not seem to change
the types of spatiotemporal patterns that are produced by the model.

6 Travelling wave analysis

For the travelling waves analysis we will focus on the values of ψ where the numerical simu-
lations of (2.1)–(2.2) result in travelling pulses and fronts, respectively. For example, when
ψ = 0.1 two stable counter-propagating pulses are created, and they travel across the domain
at approximate speed c = 0.006182 (see Fig. 6a). Fig. 10a shows the pulses and Fig. 10b–d
are solution profiles at times τ = 50, 250, 400. Also, when ψ = 0.5 two stable counter-
propagating fronts are created, and they travel across the domain at speed c = 0.004155
(see Fig. 6f). The fronts are shown in Fig. 11a and Fig. 11b–d are solution profiles at the
same three times. The given wave speeds have been estimated directly from the numerical
simulation results.

In the coming section, we introduce the travelling wave variable to transform (2.1)–(2.2)

13



(a)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(c)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(d)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(e)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(f)

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

-0.84

-0.82

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

Figure 8: Space-time plots using the same parameter values as Fig. 3 but now with the
perturbation function (5.3) in the initial condition (5.1).

to a set of three ODEs and approximate the travelling wave solutions numerically. This allows
us to find the homoclinic and heteroclinic trajectories that correspond to the travelling pulse
and front solutions, respectively.

6.1 Existence of Travelling Waves

To describe the travelling wave profile we consider travelling waves with unknown wave speed
c > 0. By introducing the travelling wave variable, ζ = X−cτ , the model (2.1)–(2.2) becomes(

V
N

)
τ

= D

(
V
0

)
ζζ

+

(
cV
cN

)
ζ

+

(
f(V,N)
g(V,N)

)
, (6.1)

where

f(V,N) = −ḡL(V − v̄L)− ḡKN(V − v̄K)− ḡCaM∞(V )(V − v̄Ca),

g(V,N) = λN(V )
(
N∞(V )−N

)
.

Travelling waves are stationary solutions to (6.1) and satisfy

D

(
V
0

)
ζζ

+ c

(
V
N

)
ζ

+

(
f(V,N)
g(V,N)

)
= 0. (6.2)
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Figure 9: Space-time plots of the membrane potential V using a longer time-frame than other
plots. The parameter values and initial conditions in panel (a) are the same as Fig. 8f, and
in panel (b) are same as Fig. 6b.

We rewrite (6.2) as system of first order ODEs with ′ := d
dζ

by introducing a new variable
W = V ′ to obtain

V ′ = W,

W ′ = − 1

D
(cW + f(V,N)),

N ′ = −1

c
g(V,N).

(6.3)

The boundary conditions are

lim
ζ→+∞

(V,W,N)(ζ) = (V+, 0, N+), lim
ζ→−∞

(V,W,N)(ζ) = (V−, 0, N−), (6.4)

where (V±, N±) are equilibria of (2.1)–(2.2). For a pulse (V+, N+) and (V−, N−) are the same
equilibrium; for a front they are different equilibria.

A number of mathematical methods have been established to show the existence of travel-
ling wave solutions in reaction-diffusion systems. These involve singular perturbation theory
[63, 18], variational techniques [14], and factorisation [1]. We use the shooting method [22]
to identify travelling waves and approximate their wave speed. This was achieved by numer-
ically computing solutions to the travelling wave ODEs (17) for initial points perturbed from
an equilibrium in a direction tangent to either its stable manifold or unstable manifold. In
either case this direction is given by an eigenvector of the Jacobian matrix of (6.3) evaluated
at the equilibrium, and a formula for this matrix is provided in Appendix A. We adjusted
the value of c until the solution was approximately homoclinic (in the case of a pulse) or
heteroclinic (in the case of a front).

We first consider the parameter values of Fig. 6a for which stable travelling pulses were
observed. The equilibrium associated with these pulses is the lower-most equilibrium branch
of Fig.2c. For the travelling wave ODEs (6.3) this equilibrium has a one-dimensional unstable
manifold. By performing the shooting method we found that a solution approximating one
branch of this manifold forms a homoclinic connection when c = 0.006116, approximately.
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Figure 10: A reproduction of Fig. 6a and plots of the solution profile at the values of τ that
are marked by horizontal lines.
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Figure 11: A reproduction of Fig. 6f and plots of the solution profile at the values of τ that
are marked by horizontal lines.
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This matches the speed of the pulses observed in Fig. 6a. A plot of the pulse profile for V
is shown in Fig. 12a and its corresponding homoclinic trajectory in (V,W,N) phase space is
shown in Fig. 12b. As expected the pulse profile extracted from our numerical solution to
(2.1)–(2.2) matches the pulse solution obtained of the travelling wave ODEs (6.3).

(a)
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PDE solution
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Figure 12: (a) The solution profile of (2.1)–(2.2) and a solution to the travelling wave ODEs
(6.3) with c = 0.006116, using the same parameter values as Fig. 6a (b) The same two
solutions but plotted in the phase space of (6.3).

Now we consider the parameter values of Fig. 6f for which our numerical solution produced
two travelling fronts. These connect the lower-most and upper-most equilibrium branches of
Fig.2c. As equilibria of (6.3) these have one-dimensional stable manifolds. Consequently we
solved (6.3) backwards in time from an initial point near the upper equilibrium and adjusted
the value of c until observing an approximately heteroclinic orbit. This produced c = 0.0043,
approximately, matching the wave speed observed in Fig. 6f. The plot of the front profile for
V (ζ) is shown in Fig. 13a and its corresponding heteroclinic trajectory in (V,W,N) phase
space is shown in Fig. 13b. The front obtained by the solution to (2.1)–(2.2) is also shown
and seen to closely match the front profile of (6.3).

7 Conclusion

In this work we have studied the collective dynamics of pacemaker SMCs through passive
electrical coupling of adjacent cells. We presented a detailed analysis of spatiotemporal dy-
namics of the model in one-dimensional domain. The local dynamics of the reaction-diffusion
system (2.1)–(2.2) under variation of model parameters are analysed to study the electrical
activity of an isolated SMC. We examined the dynamics of the membrane voltage V via
numerical bifurcation analysis with the potential at which the potassium and calcium chan-
nels are half-opened, v̄1 and v̄3, and the time constant, ψ, as bifurcation parameters. Upon
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Figure 13: (a) The solution profile of (2.1)–(2.2) and a solution to the travelling wave ODEs
(6.3) with c = 0.0043 using the same parameter values as Fig. 6f (b) The same two solutions
but plotted in the phase space of (6.3).

varying the parameters the model exhibits different dynamical features including transitions
from stable solutions to periodic firing. The model exhibited the two types of excitability
for excitable cells depending on how parameters are varied. Variation of v̄1 results in Type I
excitability and Type II excitability is observed as v̄3 is varied [25].

With the help of linear stability analysis, we showed that the patterns are not due to
Turing instability. In this present work, we have that the spatiotemporal patterns observed
in the model are as a consequence of the nonlinear dynamics of the system in the absence of
diffusion. That is the conditions for instability in the spatially extended model is the same
as that of the non-spatial system.

The main goal of this work is to examine spatiotemporal dynamics in a network of SMCs
through propagation of action potential between adjacent cells. To investigate the evolution
of the model dynamics as time increases we perturbed the centre of the domain with a
Gaussian pulse. In general, the initial perturbation induced counter propagating pulses
that travel across the domain as time progresses. The numerical simulations of the reaction-
diffusion system showed a wide variety of spatiotemporal behaviours such as travelling pulses,
travelling fronts and spatiotemporal chaos. Transitions between patterns are driven by the
model parameters. For instance, the system transitions from stable travelling pulses to
travelling fronts as the rate constant for the kinetics of the open K+ channel ψ is varied.

We also showed that the shape of the initial perturbation does not affect the type of
spatiotemporal patterns exhibited by the model. The patterns observed when the initial
perturbation is changed to a straight line are similar to when a Gaussian pulse is considered as
the perturbation function. Therefore, we can conclude that the shape of initial perturbation
does not appear to have much effect on different patterns that emerge as parameters are
varied provided an action potential is triggered by the initial perturbation.
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We also investigated the travelling wave solutions to the reaction-diffusion system. We
showed the existence of homoclinic trajectory connecting a steady state to itself (pulse so-
lution) and heteroclinic trajectory connecting two different steady states (front solution)
numerically with the shooting method, and it was shown that the estimated wave speed in
the travelling wave ODE system is very close to the wave speed observed in the numerical
simulations. It is worth exploring the stability of the travelling waves, this would provide
a better understanding of how the spatiotemporal patterns transition from stable propa-
gating waves to complex patterns. This analysis will be our focus in future work. In this
work we have studied spatiotemporal dynamics in one spatial dimension, however the model
can be extended to two-dimension setting. Hence, it would be interesting to further study
two-dimensional patterns in the reaction-diffusion system.

A The linearisation of the travelling wave ODE

Here we evaluate the Jacobian matrix of the travelling wave ODEs (17) at an arbitrary
equilibrium (V±,W±, N±). The Jacobian matrix is

J =

 0 1 0
− 1
D
fV − c

D
− 1
D
fN

−1
c
gV 0 −1

c
gN

, (A.5)

where

fV =

[
− ḡL − ḡKN± −

ḡCa

2v̄2

(
1− tanh2

(
V± − v̄1
v̄2

))
(V± − v̄Ca)

− ḡCa

2

(
1 + tanh

(
V± − v̄1
v̄2

))]
,

fN = −ḡK(V± − v̄K),

gV =
ψ

2v̄4

[{
1

2

(
1 + tanh

(
V± − v̄3
v̄4

))
−N±

}
sinh

(
V± − v̄3

2v̄4

)]

+
ψ

2v̄4

[
cosh

(
V± − v̄3

2v̄4

)(
1− tanh2

(
V± − v̄3
v̄4

))]
,

gN = −ψ cosh

(
V± − v̄3

2v̄4

)
.

The eigenvalues of (A.5) are the solutions to the characteristic equation

λ3 + P2λ
2 + P1λ+ P0 = 0, (A.6)

where

P2 =
gND + c2

cD
, P1 =

gN + fV
D

, and P0 =
fV gN − fNgV

cD
.
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